Skip to main content

Fuel Cell Manufacturing Using Ultrasonic Spray Technology

Fuel Cell Manufacturing Using Ultrasonic Spray Technology

A variety of fuel cells utilize catalysts at both the anode (to oxidize fuel and convert it to protons/hydrogen cations and electrons) and the cathode (convert hydrogen cations and oxygen to water), often precious metal, nanocarbon, or other nanomaterial-based. Doped carbon nanotubes and core-shell metallic or composite nanoparticles are two examples of such. Such catalyst materials need first to be synthesized and then coated onto electrode and/or membrane surfaces for use in fuel cells. Solid oxide fuel cells (SOFCs) that do not utilize catalyst coatings are also of interest.

Cheersonic high-temperature nozzles, nebulizers, and particle generators can be used for fuel cell catalyst nanomaterial synthesis via chemical vapor deposition and/or spray pyrolysis techniques. Moreover, Cheersonic can custom manufacture AACVD and spray pyrolysis systems for fuel cell catalyst synthesis, based on customer goals and requirements, whether for the development or production of catalyst particles, for the research lab, start-up, or experienced production facility. Cheersonic nozzles or probes may also be used for spray particle synthesis, sonochemical synthesis, or other wet-chemical synthesis techniques utilized to make catalyst materials and nanoparticles.

Cheersonic nozzles can also be used to coat electrode or membrane substrates with catalyst materials. As a consequence of synthesis, or post-synthesis, depending on the technique used, catalyst particles are often suspended, forming "inks", which then need to be coated onto appropriate electrodes or membranes for use in fuel cells. Cheersonic's ultrasonic atomizer nozzles and automated robotic coating systems can be used to accurately, precisely, and uniformly coat catalyst films and layers onto such substrates, minimizing overspray and hence minimizing waste, which is also important for device optimization, reproducibility, sustainability, and cost savings. Cheersonic develops robotic coating systems from the benchtop/research level up, allowing for scalability of processes used to create novel, "cutting-edge" fuel cell catalysts as part of a clean, sustainable energy future. Furthermore, solution- or suspension-based spraying using Cheersonic nozzles can potentially be utilized to print or coat solid oxide fuel cell materials, even if such spraying need occur over a heated substrate or in a heated environment such as an oven or furnace.

About Cheersonic


Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive.

The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw material, water and energy usage and provide improved process repeatability, transfer efficiency, high uniformity and reduced emissions.

Cheersonic’s growth strategy is focused on leveraging its innovative technologies, proprietary know-how, unique talent and experience, and global reach to further develop thin film coating technologies that enable better outcomes for its customers’ products and processes. For further information, visit https://www.cheersonic-liquid.cn/en/.

Ultrasonic Spraying Fuel Cell GDL - Coating Gas Diffusion Layer

Comments

Popular posts from this blog

Ultrasonic Benchtop Fuel Cell Catalyst Coating System

  Ultrasonic Benchtop Fuel Cell Catalyst Coating System Automatic Ultrasonic Coating System  – Cheersonic If you are a scholar in the fuel cell field, and if you are studying for fuel cells in the lab. We will suggest the UAM4000L ultrasonic benchtop fuel cell catalyst coating system. This  desktop ultrasonic spray coating equipment  can be used to do various experiments on fuel cells, such as membrane electrode coating preparation, spray coating on various types of carbon paper, and spray various types and concentrations of catalysts. This equipment is dedicated to the laboratory, compact and versatile. Ultrasonic Fuel Cell Catalyst Coating Systems

The heart of fuel cells-membrane electrodes

The heart of fuel cells-membrane electrodes Ordered membrane electrode is undoubtedly the main direction of the next generation of membrane electrode preparation technology. While reducing the platinum group element load, the following 5 aspects need to be further considered: 1) Ordered membrane electrode is very sensitive to impurities; 2 ) Broaden the operating range of membrane electrodes through material optimization, characterization, and modeling; 3) Introduce fast proton conductor nanostructures in the catalytic layer; 4) Low-cost mass production process development; 5) In-depth research on membrane electrode proton exchange membranes, electricity The interaction and synergy between the catalyst and the gas diffusion layer.

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings Ultrasonic spray systems are used to coat Nafion, Fumion or other catalytic membranes with carbon black or other catalyst inks during fuel cell manufacturing. Cheersonic ultrasonic spray systems achieve 95%+ effective use of platinum when spraying expensive catalyst chemistries. Uniform thin film maximize surface area exposure of catalyst with homogeneous pinhole-free films. Visit https://www.cheersonic-liquid.cn/en About Cheersonic Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive. The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw materi...