Skip to main content

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions

Open/idle speed, variable load, start and stop are the three key vehicle operating conditions that accelerate the aging of fuel cell stack materials and components. Among them, the main reason that affects the durability of the fuel cell under startup and shutdown conditions is the high interface potential difference caused by the hydrogen/air interface. This article shares the attenuation mechanism of fuel cell life under startup and shutdown conditions.

Start-up and shutdown is a special condition that triggers abnormal fuel cell reactions. The main reason for accelerating fuel cell degradation is the high cathode interface potential difference (up to 1.5V) caused by the anode hydrogen/air interface. Under startup and shutdown conditions, the carbon support that constitutes the main framework of the catalytic layer will be severely corroded, which will affect the Pt catalyst and ionomer. In addition, if the structure of the cathode catalytic layer is affected, it will change or even collapse, reducing the electrochemically active area and increasing the charge and mass transfer resistance. In addition, low-temperature start-up is a component of start-stop conditions, and its freezing/melting cycle also has a significant impact on key battery materials and durability. Therefore, it is particularly necessary to develop electrode materials resistant to high potentials and optimize start-stop control strategies.

In the start-up phase, hydrogen is usually used to purge the anode electrode and the flow channel mixed with air. During the shutdown phase, as air enters the anode through reverse osmosis from the cathode, or ambient air enters the anode cavity from the anode outlet, the anode will produce a hydrogen/air interface. Even if air purging is used, the hydrogen/air interface will still appear in a short time.

Under start-up and shutdown conditions, fuel cells experience serious carbon carrier corrosion. The corrosion of the carbon support will lead to agglomeration and separation of the Pt catalyst, collapse of the cathode structure, and increased mass transfer polarization. According to the reverse current mechanism, the anode hydrogen/air interface causes the cathode to generate a high potential as high as 1.5 V during the start-stop phase. High potential will cause more serious carbon corrosion, which manifests as CO2 emissions, carbon carrier particles become smaller, carbon carrier pores, and the thickness of the cathode catalyst layer is reduced. Due to differences in local gas state and mass transfer, there are differences in carbon carrier corrosion at the anode inlet and outlet, ridges and flow channels. Due to the redistribution of the polymer, the gas mass transmission resistance will increase under startup and shutdown conditions; the collapse of the cathode catalytic layer structure causes the porosity to decrease and the surface of the carbon support is hydrophilic. Therefore, high corrosion resistance catalyst support materials have become an important development direction. Starting at a low temperature below zero produces an icing/melting cycle, in which the volume expansion caused by the icing process will cause structural damage to the battery MEA. Therefore, it is necessary to purge the residual moisture inside the stack after shutdown.



Comments

Popular posts from this blog

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings Ultrasonic spray systems are used to coat Nafion, Fumion or other catalytic membranes with carbon black or other catalyst inks during fuel cell manufacturing. Cheersonic ultrasonic spray systems achieve 95%+ effective use of platinum when spraying expensive catalyst chemistries. Uniform thin film maximize surface area exposure of catalyst with homogeneous pinhole-free films. Visit https://www.cheersonic-liquid.cn/en About Cheersonic Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive. The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw materi

Fuel Cell Manufacturing Using Ultrasonic Spray Technology

Fuel Cell Manufacturing Using Ultrasonic Spray Technology A variety of fuel cells utilize catalysts at both the anode (to oxidize fuel and convert it to protons/hydrogen cations and electrons) and the cathode (convert hydrogen cations and oxygen to water), often precious metal, nanocarbon, or other nanomaterial-based. Doped carbon nanotubes and core-shell metallic or composite nanoparticles are two examples of such. Such catalyst materials need first to be synthesized and then coated onto electrode and/or membrane surfaces for use in fuel cells. Solid oxide fuel cells (SOFCs) that do not utilize catalyst coatings are also of interest. Cheersonic high-temperature nozzles, nebulizers, and particle generators can be used for fuel cell catalyst nanomaterial synthesis via chemical vapor deposition and/or spray pyrolysis techniques. Moreover, Cheersonic can custom manufacture AACVD and spray pyrolysis systems for fuel cell catalyst synthesis, based on customer goals and requirements, whether