Skip to main content

Improving Fuel Cell Performance With AI

 

Improving Fuel Cell Performance With AI

Fuel cells use clean hydrogen fuel, which can be generated by wind and solar energy, to produce heat and electricity, and lithium-ion batteries, like those found in smartphones, laptops, and electric cars, are a popular type of energy storage. The performance of both is closely related to their micro-structure: how the pores (holes) inside their electrodes are shaped and arranged can affect how much power fuel cells can generate, and how quickly batteries charge and discharge.

However, because the micrometer-scale pores are so small, their specific shapes and sizes can be difficult to study at a high enough resolution to relate them to overall cell performance.

Now, Imperial researchers have applied machine learning techniques to help them explore these pores virtually and run 3D simulations to predict cell performance based on their micro-structure.

The researchers used a novel machine learning technique called “deep convolutional generative adversarial networks” (DC-GANs). These algorithms can learn to generate 3D image data of the micro-structure based on training data obtained from nano-scale imaging performed synchrotrons (a kind of particle accelerator the size of a football stadium).

Lead author Andrea Gayon-Lombardo, of Imperial’s Department of Earth Science and Engineering, said: “Our technique is helping us zoom right in on batteries and cells to see which properties affect overall performance. Developing image-based machine learning techniques like this could unlock new ways of analyzing images at this scale.”

When running 3D simulations to predict cell performance, researchers need a large enough volume of data to be considered statistically representative of the whole cell. It is currently difficult to obtain large volumes of micro-structure image data at the required resolution.

However, the authors found they could train their code to generate either much larger datasets that have all the same properties, or deliberately generate structures that models suggest would result in better-performing batteries.

Project supervisor Dr. Sam Cooper, of Imperial’s Dyson School of Design Engineering, said: “Our team’s findings will help researchers from the energy community to design and manufacture optimized electrodes for improved cell performance. It’s an exciting time for both the energy storage and machine learning communities, so we’re delighted to be exploring the interface of these two disciplines.”

By constraining their algorithm to only produce results that are currently feasible to manufacture, the researchers hope to apply their technique to manufacturing to designing optimized electrodes for next-generation cells.

Comments

Popular posts from this blog

Design and selection of fuel cell gas diffusion layer

Design and selection of fuel cell gas diffusion layer As an important component of the membrane electrode, the design and selection of the gas diffusion layer should be adapted to local conditions according to factors such as the water management characteristics of the stack, the size of the electrode plate, and the target thickness of the monomer. The gas diffusion layer (GDL) is a type of hydrophobic porous medium material, located between the flow field plate and the catalytic layer, acting as a carrier for water and gas transport, heat transfer, and electron conduction, and provides structural support during assembly and operation. GDL is usually composed of a macroporous substrate (MPS) and a microporous layer (MPL). Among them, the base layer is usually composed of an anisotropic stack of carbon fibers and directly contacts the flow field plate; the microporous layer is formed by mixing carbon-based powder and a water-repellent agent and directly contacts the catalytic layer. Key

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions Open/idle speed, variable load, start and stop are the three key vehicle operating conditions that accelerate the aging of fuel cell stack materials and components. Among them, the main reason that affects the durability of the fuel cell under startup and shutdown conditions is the high interface potential difference caused by the hydrogen/air interface. This article shares the attenuation mechanism of fuel cell life under startup and shutdown conditions. Start-up and shutdown is a special condition that triggers abnormal fuel cell reactions. The main reason for accelerating fuel cell degradation is the high cathode interface potential difference (up to 1.5V) caused by the anode hydrogen/air interface. Under startup and shutdown conditions, the carbon support that constitutes the main framework of the catalytic layer will be severely corroded, which will affect the Pt ca

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings Ultrasonic spray systems are used to coat Nafion, Fumion or other catalytic membranes with carbon black or other catalyst inks during fuel cell manufacturing. Cheersonic ultrasonic spray systems achieve 95%+ effective use of platinum when spraying expensive catalyst chemistries. Uniform thin film maximize surface area exposure of catalyst with homogeneous pinhole-free films. Visit https://www.cheersonic-liquid.cn/en About Cheersonic Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive. The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw materi