Skip to main content

Improving Fuel Cell Performance With AI

 

Improving Fuel Cell Performance With AI

Fuel cells use clean hydrogen fuel, which can be generated by wind and solar energy, to produce heat and electricity, and lithium-ion batteries, like those found in smartphones, laptops, and electric cars, are a popular type of energy storage. The performance of both is closely related to their micro-structure: how the pores (holes) inside their electrodes are shaped and arranged can affect how much power fuel cells can generate, and how quickly batteries charge and discharge.

However, because the micrometer-scale pores are so small, their specific shapes and sizes can be difficult to study at a high enough resolution to relate them to overall cell performance.

Now, Imperial researchers have applied machine learning techniques to help them explore these pores virtually and run 3D simulations to predict cell performance based on their micro-structure.

The researchers used a novel machine learning technique called “deep convolutional generative adversarial networks” (DC-GANs). These algorithms can learn to generate 3D image data of the micro-structure based on training data obtained from nano-scale imaging performed synchrotrons (a kind of particle accelerator the size of a football stadium).

Lead author Andrea Gayon-Lombardo, of Imperial’s Department of Earth Science and Engineering, said: “Our technique is helping us zoom right in on batteries and cells to see which properties affect overall performance. Developing image-based machine learning techniques like this could unlock new ways of analyzing images at this scale.”

When running 3D simulations to predict cell performance, researchers need a large enough volume of data to be considered statistically representative of the whole cell. It is currently difficult to obtain large volumes of micro-structure image data at the required resolution.

However, the authors found they could train their code to generate either much larger datasets that have all the same properties, or deliberately generate structures that models suggest would result in better-performing batteries.

Project supervisor Dr. Sam Cooper, of Imperial’s Dyson School of Design Engineering, said: “Our team’s findings will help researchers from the energy community to design and manufacture optimized electrodes for improved cell performance. It’s an exciting time for both the energy storage and machine learning communities, so we’re delighted to be exploring the interface of these two disciplines.”

By constraining their algorithm to only produce results that are currently feasible to manufacture, the researchers hope to apply their technique to manufacturing to designing optimized electrodes for next-generation cells.

Comments

Popular posts from this blog

Ultrasonic Benchtop Fuel Cell Catalyst Coating System

  Ultrasonic Benchtop Fuel Cell Catalyst Coating System Automatic Ultrasonic Coating System  – Cheersonic If you are a scholar in the fuel cell field, and if you are studying for fuel cells in the lab. We will suggest the UAM4000L ultrasonic benchtop fuel cell catalyst coating system. This  desktop ultrasonic spray coating equipment  can be used to do various experiments on fuel cells, such as membrane electrode coating preparation, spray coating on various types of carbon paper, and spray various types and concentrations of catalysts. This equipment is dedicated to the laboratory, compact and versatile. Ultrasonic Fuel Cell Catalyst Coating Systems

The heart of fuel cells-membrane electrodes

The heart of fuel cells-membrane electrodes Ordered membrane electrode is undoubtedly the main direction of the next generation of membrane electrode preparation technology. While reducing the platinum group element load, the following 5 aspects need to be further considered: 1) Ordered membrane electrode is very sensitive to impurities; 2 ) Broaden the operating range of membrane electrodes through material optimization, characterization, and modeling; 3) Introduce fast proton conductor nanostructures in the catalytic layer; 4) Low-cost mass production process development; 5) In-depth research on membrane electrode proton exchange membranes, electricity The interaction and synergy between the catalyst and the gas diffusion layer.

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings Ultrasonic spray systems are used to coat Nafion, Fumion or other catalytic membranes with carbon black or other catalyst inks during fuel cell manufacturing. Cheersonic ultrasonic spray systems achieve 95%+ effective use of platinum when spraying expensive catalyst chemistries. Uniform thin film maximize surface area exposure of catalyst with homogeneous pinhole-free films. Visit https://www.cheersonic-liquid.cn/en About Cheersonic Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive. The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw materi...