Skip to main content

Design and selection of fuel cell gas diffusion layer

Design and selection of fuel cell gas diffusion layer

As an important component of the membrane electrode, the design and selection of the gas diffusion layer should be adapted to local conditions according to factors such as the water management characteristics of the stack, the size of the electrode plate, and the target thickness of the monomer.

The gas diffusion layer (GDL) is a type of hydrophobic porous medium material, located between the flow field plate and the catalytic layer, acting as a carrier for water and gas transport, heat transfer, and electron conduction, and provides structural support during assembly and operation. GDL is usually composed of a macroporous substrate (MPS) and a microporous layer (MPL). Among them, the base layer is usually composed of an anisotropic stack of carbon fibers and directly contacts the flow field plate; the microporous layer is formed by mixing carbon-based powder and a water-repellent agent and directly contacts the catalytic layer.

Key characteristics of gas diffusion layer

The gas diffusion layer is usually composed of a porous, non-woven, and macroporous carbon substrate. The substrate is hydrophobically treated with PTFE and coated with a single or multiple microporous layer (MPL). Generally, gas diffusion layer materials for proton exchange membrane fuel cells should have key characteristics such as reaction gas diffusion, product water diffusion and transport, electrical conductivity, heat conduction, and mechanical support.

Microporous layer

The microporous layer is a microporous structure composed of carbon powder and PTFE. The thickness and porosity of the microporous layer have an important impact on fuel cell performance. The thickness of the microporous layer directly affects the product water transmission rate, the electrical conductivity (contact resistance) of the gas diffusion layer and the mechanical strength (such as the surface roughness of the microporous layer). The following provides some basic comparative experiments to facilitate users to have a basic understanding of the design and selection of the microporous layer.

For more news about fuel cells, please visit https://fuelcellcoating.blogspot.com/.

For detailed information on the preparation of fuel cell membrane electrode coatings, you can log on to Cheersonic’s official website https://www.cheersonic-liquid.cn/en/ultrasonic-spraying-for-battery/.

Comments

Popular posts from this blog

Fuel Cell Catalyst Coatings

Fuel Cell Catalyst Coating A fuel cell works much like an electric battery, converting chemical energy into electrical energy using the movement of charged hydrogen ions across an electrolyte membrane to generate current. There they recombine with oxygen to produce water – a fuel cell’s only emission, alongside hot air. Although less efficient than electric batteries, today’s fuel cells compare favourably with internal combustion engine technology, which converts fuel into kinetic energy at roughly 25 per cent efficiency. A fuel cell, by contrast, can mix hydrogen with air to produce electricity at up to 60 per cent efficiency. Fuel cell catalyst coating systems are particularly suitable for these challenging applications by creating highly uniform, repeatable and durable coatings. From R&D to production, our anti-clogging technology can better control coating properties, significantly reduce material usage, and reduce maintenance and downtime. Ultrasonic spraying of other metal al...

Fuel Cell Carbon Paper Spraying

Fuel Cell Carbon Paper Spraying Carbon paper (carbon cloth), also known as carbon fiber paper (cloth), is a special material for fuel cell experiments, that is, gas diffusion layer, which is an indispensable item in the heart-membrane electrode assembly (MEA) of fuel cells It plays the role of a bridge between MEA and bipolar plate. Proton exchange membrane  fuel cell  is currently one of the most promising clean energy sources. The gas diffusion layer is an important part of the proton exchange membrane  fuel cell . Carbon paper is the most widely used substrate material for gas diffusion layer due to its excellent performance and relatively mature paper-making process. An aerospace university cooperated with our company to purchase UAM4000L ultrasonic precision spraying equipment from our company to do fuel cell carbon paper spraying. The spraying area is 1 1-3 3CM, covering 1-5 mg of carbon black per square centimeter. The thickness is between 0.5-6 microns. Ultrasonic...

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions Open/idle speed, variable load, start and stop are the three key vehicle operating conditions that accelerate the aging of fuel cell stack materials and components. Among them, the main reason that affects the durability of the fuel cell under startup and shutdown conditions is the high interface potential difference caused by the hydrogen/air interface. This article shares the attenuation mechanism of fuel cell life under startup and shutdown conditions. Start-up and shutdown is a special condition that triggers abnormal fuel cell reactions. The main reason for accelerating fuel cell degradation is the high cathode interface potential difference (up to 1.5V) caused by the anode hydrogen/air interface. Under startup and shutdown conditions, the carbon support that constitutes the main framework of the catalytic layer will be severely corroded, which will affect the Pt ca...