Skip to main content

Realizing the hydrogen economy

Realizing the hydrogen economy


Realizing the hydrogen economy – Coating Catalysts – Cheersonic

Although less efficient than electric batteries, today’s hydrogen fuel cells compare favorably with internal combustion engine technology, which converts fuel into kinetic energy at roughly 25 per cent efficiency. A fuel cell, by contrast, can mix hydrogen with air to produce electricity at up to 60 per cent efficiency.



A fuel cell works much like an electric battery, converting chemical energy into electrical energy using the movement of charged hydrogen ions across an electrolyte membrane to generate current. There they recombine with oxygen to produce water – a fuel cell’s only emission, alongside hot air.

Although less efficient than electric batteries, today’s fuel cells compare favorably with internal combustion engine technology, which converts fuel into kinetic energy at roughly 25 per cent efficiency. A fuel cell, by contrast, can mix hydrogen with air to produce electricity at up to 60 per cent efficiency.

FCEVs also present relatively low barriers to entry in terms of societal changes, as they operate and perform similarly to conventional vehicles, refueling at stations in minutes and driving for 500 to 600 kilometers on a single tank, all with no harmful emissions.

The hydrogen fuel itself can be produced with ever-increasing cost-effectiveness through electrolysis, by splitting water into its constituent hydrogen and oxygen atoms. This generates two useful gases and, when powered by green energy, makes hydrogen production a carbon-neutral act.

At present, however, just 2 per cent of the 600 billion cubic meters of hydrogen manufactured each year around the world is produced by water electrolysis, while 98 per cent is produced from natural gas, with carbon dioxide as a by-product.

More than 90 per cent of this hydrogen is used as a building block for fertilizers or is consumed within the oil, refining and wider petrochemicals industry.

The development of the hydrogen economy, therefore, relies on government investment in the initial phases. Investment in both hydrogen production and distribution infrastructure is needed, alongside the renewable power projects required to supply carbon-neutral energy.

For the moment, the scarcity of such infrastructure represents the single largest obstacle to the adoption of hydrogen technology.

Globally, the cost of hydrogen is already coming down, partly in line with the fall in the cost of renewable energy, but also due to improvements in water electrolysis and hydrogen fuel cell technology.

The Paris-based International Energy Agency expects the cost of producing hydrogen to fall by a further 30 per cent by 2030, but the rapid reduction in the cost of recent photovoltaic solar energy projects in the Middle East could mean the local cost of commercially producing hydrogen will fall even faster.

As investment in hydrogen infrastructure grows and net costs continue to fall, the hydrogen economy could prove to be an indispensable tool in the transition away from hydrocarbons.

Comments

Popular posts from this blog

Ultrasonic Benchtop Fuel Cell Catalyst Coating System

  Ultrasonic Benchtop Fuel Cell Catalyst Coating System Automatic Ultrasonic Coating System  – Cheersonic If you are a scholar in the fuel cell field, and if you are studying for fuel cells in the lab. We will suggest the UAM4000L ultrasonic benchtop fuel cell catalyst coating system. This  desktop ultrasonic spray coating equipment  can be used to do various experiments on fuel cells, such as membrane electrode coating preparation, spray coating on various types of carbon paper, and spray various types and concentrations of catalysts. This equipment is dedicated to the laboratory, compact and versatile. Ultrasonic Fuel Cell Catalyst Coating Systems

The heart of fuel cells-membrane electrodes

The heart of fuel cells-membrane electrodes Ordered membrane electrode is undoubtedly the main direction of the next generation of membrane electrode preparation technology. While reducing the platinum group element load, the following 5 aspects need to be further considered: 1) Ordered membrane electrode is very sensitive to impurities; 2 ) Broaden the operating range of membrane electrodes through material optimization, characterization, and modeling; 3) Introduce fast proton conductor nanostructures in the catalytic layer; 4) Low-cost mass production process development; 5) In-depth research on membrane electrode proton exchange membranes, electricity The interaction and synergy between the catalyst and the gas diffusion layer.

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings Ultrasonic spray systems are used to coat Nafion, Fumion or other catalytic membranes with carbon black or other catalyst inks during fuel cell manufacturing. Cheersonic ultrasonic spray systems achieve 95%+ effective use of platinum when spraying expensive catalyst chemistries. Uniform thin film maximize surface area exposure of catalyst with homogeneous pinhole-free films. Visit https://www.cheersonic-liquid.cn/en About Cheersonic Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive. The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw materi...