Skip to main content

Fuel Cell Catalyst Layer Coating

Fuel Cell Catalyst Layer Coating

The direct methanol fuel cell (DMFC) is one of the most researched proton exchange membrane (PEM) fuel cell systems. Their low operating temperature and high energy density make them an attractive alternative for the electronic device market. In spite of these advantages the adoption and commercialization of DMFC fuel cells have been slow mainly because of the high manufacturing costs of the membrane electrode assembly (MEA), the most expensive component of direct methanol fuel cells.

The catalysts used in the MEA consist of either platinum or platinum alloys, which are historically expensive materials. In addition to the cost of materials, manufacturing of MEAs is still performed with techniques developed for small-scale manufacturing, resulting in high production costs. It would greatly benefit the fuel cell industry if alternative materials and cost-effective defect-free large-scale manufacturing techniques were developed for the MEA.

In PEM fuel cells, the catalyst layer is very thin (in the order of a few microns thick) and is too delicate to be manufactured separately from other components of the cell. This layer is usually formulated as liquid ink and can be deposited by a variety of coating techniques. Among these techniques, coating the catalyst layer directly on the PEM exhibits best performance and durability, in addition to having the fewest manufacturing steps.

Fuel Cell Catalyst Layer Coating systems are particularly suitable for these challenging applications by creating highly uniform, repeatable and durable coatings. From R&D to production, our anti-clogging technology can better control coating properties, significantly reduce material usage, and reduce maintenance and downtime. Ultrasonic spraying of other metal alloys, including platinum, nickel, iridium and ruthenium-based fuel cell catalyst coatings of metal oxide suspensions, can be used to manufacture PEM fuel cells, polymer electrolyte membrane (PEM) electrolyzers, and DMFC (direct methanol fuel). Battery) and SOFC (Solid Oxide Fuel Cell) can maximize load and battery efficiency.

Ultrasonic Fuel Cell Coating Video

UAM4000L Ultrasonic Coating System

About Cheersonic

Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive.

The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw material, water and energy usage and provide improved process repeatability, transfer efficiency, high uniformity and reduced emissions.

Cheersonic’s growth strategy is focused on leveraging its innovative technologies, proprietary know-how, unique talent and experience, and global reach to further develop thin film coating technologies that enable better outcomes for its customers’ products and processes. For further information, visit https://www.cheersonic-liquid.cn/en/.

Comments

Popular posts from this blog

The heart of fuel cells-membrane electrodes

The heart of fuel cells-membrane electrodes Ordered membrane electrode is undoubtedly the main direction of the next generation of membrane electrode preparation technology. While reducing the platinum group element load, the following 5 aspects need to be further considered: 1) Ordered membrane electrode is very sensitive to impurities; 2 ) Broaden the operating range of membrane electrodes through material optimization, characterization, and modeling; 3) Introduce fast proton conductor nanostructures in the catalytic layer; 4) Low-cost mass production process development; 5) In-depth research on membrane electrode proton exchange membranes, electricity The interaction and synergy between the catalyst and the gas diffusion layer.

Fuel Cell Carbon Paper Spraying

Fuel Cell Carbon Paper Spraying Carbon paper (carbon cloth), also known as carbon fiber paper (cloth), is a special material for fuel cell experiments, that is, gas diffusion layer, which is an indispensable item in the heart-membrane electrode assembly (MEA) of fuel cells It plays the role of a bridge between MEA and bipolar plate. Proton exchange membrane  fuel cell  is currently one of the most promising clean energy sources. The gas diffusion layer is an important part of the proton exchange membrane  fuel cell . Carbon paper is the most widely used substrate material for gas diffusion layer due to its excellent performance and relatively mature paper-making process. An aerospace university cooperated with our company to purchase UAM4000L ultrasonic precision spraying equipment from our company to do fuel cell carbon paper spraying. The spraying area is 1 1-3 3CM, covering 1-5 mg of carbon black per square centimeter. The thickness is between 0.5-6 microns. Ultrasonic...

Ultrasonic Benchtop Fuel Cell Catalyst Coating System

  Ultrasonic Benchtop Fuel Cell Catalyst Coating System Automatic Ultrasonic Coating System  – Cheersonic If you are a scholar in the fuel cell field, and if you are studying for fuel cells in the lab. We will suggest the UAM4000L ultrasonic benchtop fuel cell catalyst coating system. This  desktop ultrasonic spray coating equipment  can be used to do various experiments on fuel cells, such as membrane electrode coating preparation, spray coating on various types of carbon paper, and spray various types and concentrations of catalysts. This equipment is dedicated to the laboratory, compact and versatile. Ultrasonic Fuel Cell Catalyst Coating Systems