Skip to main content

Ultrasonic Spray For Electrode Coating

 

Ultrasonic Spray For Electrode Coating

Ultrasonic Spray For Electrode Coating. Maximizing the use of Electrode in the Fuel Cell by ultrasonic spray

As a promising substitution to conventional power sources rely on combustion of fossil fuels, proton exchange membrane fuel cells (PEMFC) have attracted plenty of interest for various applications such as power sources for portable electronics, stationary power generation, and onto mobiles. At the present time, PEMFCs are still facing the challenges of cost as well as performance issues before they can be largely commercialized.

As an important part of the proton exchange membrane fuel cell, the electrode is to study how to reduce the Pt loading of the cathode without reducing the performance of the fuel cell, so that the large-scale commercialization of PEMFC can achieve further development.In order to reduce the Pt loading as well as improve the catalyst performance, carbon nanofibers (CNFs) directly grown on carbon paper is produced to act as novel catalyst support. This structure ensures that all the catalyst particles are in firm electrical contact with the carbon paper backings. Furthermore, CNFs possess higher electric conductivity, larger surface area and better corrosion resistance compared with conventional carbon black catalyst supports.

Due to these advantages the use of CNFs as catalyst support can improve the Pt catalyst utilization efficiency; the mass transfer properties of the catalyst layer and the durability. To further reduce the cathode Pt loading and improve the performance, a pulse current electrodeposition (PCE) based three-step method was developed and utilized to fabricate membrane-electrode assemblies (MEAs) cathodes with ultra low platinum loading. The purpose of this study is to improve the catalytic activity of platinum by alloying it with transition metals on oxygen reduction reaction occured at cathode side and to investigate the electrochemical and electrocatalytic characteristics of ternary alloys in PEMFCs.

This approach involves an electrodeposition process to establish an improved catalyst layer structure with better catalyst utilization efficiency, followed with a galvanic displacement and electrochemical dissolution process to produce core shell structured Pt-based alloy to improve the catalyst mass activity. The control of catalyst distribution uniformity on a 5 × 5 cm2 electrode prepared by this novel three step process was studied. It was found that density and porosity of the carbon black substrate affect the catalyst layer thickness and thus influence the performance, PtFeNi catalyst prepared on a dense carbon black substrate produces a catalyst layer thickness of 3-5 μm, while catalyst prepared on a loose carbon black substrate exhibits a thickness of about 10 μm. The MEA prepared with a loose carbon substrate cathode performs twice higher than that with a dense carbon substrate in a single cell test.

In terms of mass power output the PtFeNi cathode exhibits a 8 times higher performance than that of Pt cathode, while preliminary durability test was also carried out on the PtFeNi MEA, a good stability of the catalyst was proven.

Ultrasonic Spray For Electrode Coating - Membrane Electrode Coating

Comments

Popular posts from this blog

Design and selection of fuel cell gas diffusion layer

Design and selection of fuel cell gas diffusion layer As an important component of the membrane electrode, the design and selection of the gas diffusion layer should be adapted to local conditions according to factors such as the water management characteristics of the stack, the size of the electrode plate, and the target thickness of the monomer. The gas diffusion layer (GDL) is a type of hydrophobic porous medium material, located between the flow field plate and the catalytic layer, acting as a carrier for water and gas transport, heat transfer, and electron conduction, and provides structural support during assembly and operation. GDL is usually composed of a macroporous substrate (MPS) and a microporous layer (MPL). Among them, the base layer is usually composed of an anisotropic stack of carbon fibers and directly contacts the flow field plate; the microporous layer is formed by mixing carbon-based powder and a water-repellent agent and directly contacts the catalytic layer. Key

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions

The attenuation mechanism of proton exchange membrane fuel cell stack under vehicle start-up and shutdown conditions Open/idle speed, variable load, start and stop are the three key vehicle operating conditions that accelerate the aging of fuel cell stack materials and components. Among them, the main reason that affects the durability of the fuel cell under startup and shutdown conditions is the high interface potential difference caused by the hydrogen/air interface. This article shares the attenuation mechanism of fuel cell life under startup and shutdown conditions. Start-up and shutdown is a special condition that triggers abnormal fuel cell reactions. The main reason for accelerating fuel cell degradation is the high cathode interface potential difference (up to 1.5V) caused by the anode hydrogen/air interface. Under startup and shutdown conditions, the carbon support that constitutes the main framework of the catalytic layer will be severely corroded, which will affect the Pt ca

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings

Ultrasonic Coating Systems for Fuel Cell Catalyst Coatings Ultrasonic spray systems are used to coat Nafion, Fumion or other catalytic membranes with carbon black or other catalyst inks during fuel cell manufacturing. Cheersonic ultrasonic spray systems achieve 95%+ effective use of platinum when spraying expensive catalyst chemistries. Uniform thin film maximize surface area exposure of catalyst with homogeneous pinhole-free films. Visit https://www.cheersonic-liquid.cn/en About Cheersonic Cheersonic is the leading developer and manufacturer of ultrasonic coating systems for applying precise, thin film coatings to protect, strengthen or smooth surfaces on parts and components for the microelectronics/electronics, alternative energy, medical and industrial markets, including specialized glass applications in construction and automotive. The Company’s solutions are environmentally-friendly, efficient and highly reliable, and enable dramatic reductions in overspray, savings in raw materi